Как ИИ изменил индустрию развлечений
Ещё в конце XX века главной проблемой для большинства людей был поиск информации и развлекательного контента. За нужными книгами приходилось идти в библиотеку; видеокассеты, а потом и DVD с фильмами — брать в прокатах; CD с музыкой — покупать. Из 2022 года это кажется чем-то невероятным. Теперь любую информацию можно найти за два клика. В приложении из вашего смартфона — все песни мира. В онлайн-кинотеатрах — как новые фильмы, так и многое из классики кинематографа. Большинство компьютерных игр можно скачать или играть в них прямо в сети. Дефицит информации сменился дефицитом внимания. За него началась настоящая борьба. Ну а победить в ней компаниям помогают технологии искусственного интеллекта. Где и как они применяются — в новой статье из цикла об ИИ на портале Naked Science.
Рассмотрим типичную ситуацию потребления развлекательного контента со стороны пользователя и со стороны компании. Вечер трудного дня. Нужно выбрать — какое бы кино посмотреть. Конкретных предпочтений у вас нет, зато есть подписка на несколько сервисов с частично не пересекающимися библиотеками фильмов и сериалов. В каждом из них тысячи наименований. Если искать, просто последовательно листая каталоги, то весь вечер уйдет только на это, а не на просмотр кино. Что же делать бедному пользователю?
В то же время у онлайн-кинотеатра свои боли: нужно повышать конкретные метрики своего продукта: посещаемость (DAU и MAU — ежедневное и ежемесячное количество уникальных пользователей), нужно обеспечить возврат зрителей, а самое главное — их вовлеченность в демонстрируемый контент и продолжительность пользования сервисом. Все эти метрики коррелируют с вероятностью продления подписки, покупок внутри кинотеатра, перехода на премиальное обслуживание, а значит и с текущей и будущей прибылью компании и курсом ее акций на бирже. Иными словами — очень важны.
В любом цифровом сервисе, будь то онлайн-кинотеатр, интернет-магазин, маркетплейс, суперапп или социальная сеть, каждое действие пользователя записывается. В типичном онлайн-кинотеатре собираются все данные о просмотренных фильмах и сериалах, в том числе о времени суток, когда их смотрели, что смотрели до и после конкретной единицы контента, «перематывали» ли в каких-то местах фильм, а также когда и где прекращали просмотр. Кроме того, фиксируются все мелочи, связанные с интерфейсом: как долго пользователь скроллит страницу; как, когда и зачем нажимает те или кнопки; какие делает поисковые запросы и т.д., и т.п.
Таким образом собирается как индивидуальный цифровой профиль конкретного клиента, увязанный с его социально-демографическими характеристиками (гендер, примерный возраст и т.д.), так и обширный датасет, который можно использовать для машинного обучения. Ведь мы помним главную аксиому — без больших и качественных данных алгоритмы искусственного интеллекта работать не будут. И вот благодаря ИИ теперь все в выигрыше: клиент получает персонализированные подборки фильмов, из которых за разумное время может выбрать то, что ему по душе. А компания вовлекает пользователя во всё более активное взаимодействие именно со своим онлайн-кинотеатром и максимизирует время просмотра контента в нём.
Музыка нас связала
В России одним из пионеров и обладателем действительно выдающейся рекомендательной системы стала Яндекс.Музыка, появившаяся еще в 2009 году. В общем и целом все рекомендательные системы строятся на двух принципах и их разнообразных комбинациях. Первый — это рекомендации на основе содержания (content-based). Так, в Яндекс.Музыке алгоритм в первую очередь анализирует содержание самого трека и расширяет рекомендации на основе содержания, извлекая ряд характеристик из предпочитаемых слушателем элементов контента. В этом случае создается не столько профиль самого пользователя, сколько некоторые паттерны особенностей предпочитаемого им контента. Далее в библиотеке ищутся другие элементы со схожим паттерном и предлагаются слушателю. Это, кстати, позволяет искусственному интеллекту учиться дальше и все глубже подстраиваться под индивидуального подписчика, так как алгоритм постоянно анализирует важность каждой характеристики из выделенных паттернов для конкретного человека. 
Кроме того, алгоритм «смотрит», какие композиции подписчик слушал ранее и по их истории дополнительно строит профиль предпочитаемых исполнителей и жанров. Добавочную информацию для уточнения прогноза дают действия пользователя: поставил ли он песне «Нравится» или «Не нравится»; сколько раз и как часто ее слушал, либо, наоборот, пропускал; добавлял ли в плейлисты; отправлял ли ссылку кому-нибудь и т.д.
Второй принцип — построение системы рекомендаций на основе коллаборативной фильтрации (collaborative filtering). Ключевым моментом здесь становится расширение рекомендаций за счёт истории оценок других пользователей. Если в предыдущем подходе алгоритм создавал сложный граф с кластерами мелодий по жанру, исполнителю, разнообразным характеристикам композиций, то в данном случае граф состоит из профилей пользователей.
Например, 20 человек объединяются в единый кластер по предпочтению песен группы «Кино», из них 10 формируют подкластер, часто слушающих ещё Nautilus Pompilius, далее у пяти в предпочтениях ещё группа «Алиса», а других пяти «Чайф». Из этого можно сделать вывод, что некий другой пользователь, обожающий «Кино» и Nautilus Pompilius, вероятно, поклонник русского рока, но при этом вряд ли любитель группы «Аквариум», зато почти наверняка «Алисы» или «Чайфа», композиции которых ему и будут рекомендованы. 
ИИ-алгоритмы постоянно сравнивают профили всех пользователей музыкальных сервисов. В результате выявляются люди со схожими музыкальными предпочтениями в общем, но разными пристрастиями в деталях. Это дает возможность для новых рекомендаций, ведь что уже нравится одному, может понравиться и другому. 
Запойный просмотр
А вот история онлайн-кинотеатров началась со знаменитого стримингового сервиса Netflix, стартовавшего в 1997 году как стартап по прокату VHS-кассет и DVD с фильмами. Сегодня это технологический гигант с 220 миллионами подписчиков, ежемесячно оплачивающих недешёвый онлайн-доступ к кино и сериалам. Однако самое главное даже не количество подписчиков. В 2020 году (разгар пандемии и локаутов) каждый пользователь Netflix в среднем просматривал с помощью этого сервиса 3,2 часа видеоконтента ежедневно. Или совокупно на всех — фантастические 6 115 200 000 часов в месяц. 
При этом в сутках у каждого человека всего 24 часа. Предположим, 8 из них занимает сон, ещё 9 — работа. На домашние дела, досуг, ну и может спортивные занятия или самообразование остаётся в лучшем случае 7 часов. А ведь могут быть ещё жены, мужья, дети, престарелые родители, домашние животные и т.д., которые все требуют заботы и внимания. И вот в этом узком отрезке Netflix научился получать почти 50% всего свободного времени своих пользователей, конкурируя, в том числе, с YouTube, Spotify, соцсетями, видеоиграми, традиционными и цифровыми СМИ, кабельным телевидением, подкастами, книгами и пр. 
Можно возразить, что мы здесь не учитываем выходные дни и праздники. Но если так, то доля видеостриминга в будние дни хоть и падает, но зато с лихвой компенсируется тем, что по-английски называют binge-watching, а по-русски запойным просмотром по многу часов подряд в уикэнд. И не в последнюю очередь этому помогают рекомендательные системы, построенные с использованием технологий искусственного интеллекта.
Вслед за Netflix систему персональных рекомендаций имплементировали и другие крупнейшие мировые игроки на рынке стримингового видео: Hulu, Amazon Prime, HBO Max, Disney+. А в России — «Иви», «Кинопоиск HD», принадлежащий Яндексу, и Okko.
Трехлетний хакатон
Первый рекомендательный алгоритм получил название CineMatch и довольно долго с успехом предсказывал пользователям Netflix фильмы, которые могли бы понравиться подписчикам. В то время у сервиса была система оценки в пять звёзд. В 75% случаев прогнозы CineMatch оказывались точны в пределах плюс или минус половины звезды. При этом до 50% пользователей Netflix, взявших напрокат рекомендованные CineMatch кассеты и DVD c фильмами, оценили их в пять звёзд
В 2006-м — за год до того как компания запустила стриминговую платформу — было организовано соревнование Netflix Prize. В открытый доступ выложили датасет, состоявший из около 100 миллионов записей: ID анонимных пользователей плюс их оценки от одной до пяти звёзд тем или иным фильмам. Задачей участников конкурса было разработать алгоритм, который сможет превзойти точность прогноза CineMatch на 10%.
Качество предсказания измерялось при помощи метрики Root Mean Squared Error (RMSE). Она сообщает квадратный корень из средней квадратичной разницы между прогнозируемыми моделью значениями оценок и фактическими значениями в реальном наборе данных. Иными словами, чем ниже RMSE, тем лучше модель соответствует набору данных, а значит её предсказание оценки пользователем того или иного фильма на основе истории его предыдущих оценок будет ближе к реальности.
У алгоритма CineMatch на тот момент RMSE равнялся 0,9514. Команде, которая бы добилась показателя хотя бы в 0,8563, был обещан миллион долларов. Турнир продлился почти три года. За первый год многим участникам удалось добиться прогресса в 7%, но дальше дело не задалось. Потребовалось еще два года, чтобы получить решение, поэтому тем удивительнее, что команда-победитель BellKor’s Pragmatic Chaos опередила занявшую второе место The Ensemble всего на 24 минуты! При этом RMSE у них совпадал до четвёртого знака.
Победители в своей модели использовали комбинацию из матричной факторизации c использованием сингулярного разложения (SVD-алгоритм) и ограниченных машин Больцмана (особого типа нейронных сетей). Ведь если совсем упрощенно, то ID пользователей и их оценки — это матрица из множества чисел. Факторизация есть её разложение на простые составляющие. 
Например, если заменить зрителей на товары в магазине, а их оценки на стоимость, то у нас, условно, будут три шоколадки и два бублика со значениями 30 рублей и 10 рублей. Элементарным примером факторизации будет деление значения на количество и получение цены — одна шоколадка стоит 10 рублей, а бублик 5. Естественно, когда вместо товаров миллионы пользователей, а их оценок ещё на порядки больше, разложение гораздо сложнее, а компонент очень много. Выявив же все скрытые факторы, теперь можно подать их на вход нейронной сети — ограниченной машины Больцмана. Обучив её, разработчики смогут получить необходимый прогноз для каждого конкретного пользователя.
Латентное байесианство
Большой проблемой рекомендательных систем остаётся неопределённость: во многих случаях у них нет полных данных ни о характеристиках контента, ни о предпочтениях подписчика. Однако искусственному интеллектувсё равно необходимо как-то оценить вероятность того, что рекомендованный фильм или песня понравится пользователю. 
Здесь на помощь приходит байесовский подход. Он позволяет за счёт теоремы Байеса постоянно актуализировать достоверность гипотезы при поступлении новых сведений. Например, новый подписчик посмотрел пару боевиков, а потом к нему в гости приехала девушка и вместе они посмотрели две мелодрамы (но рекомендательный алгоритм об этом не знает!). Логично, что с вероятностью 50% пользователю надо предлагать боевики и мелодрамы, однако если он потом вновь предпочтет какой-нибудь «Рейд 2» или «Джон Уик 3», то мелодрамы окажутся случайной флуктуацией. И тогда, оценив влияние новых событий, модель снова изменит выдачу рекомендованных фильмов или песен.
Байесовский подход — очень действенный метод. Благодаря его использованию можно выявить лучшие гипотезы, основываясь на наборе случайных, сильно зашумленных данных. Иными словами, он позволяет осуществлять машинное обучение даже в условиях недостаточного или некачественного датасета. При этом байесовский подход можно эффективно комбинировать с различными нейронными сетями.
Преодолевая барьеры
И все же, несмотря на всемогущество рекомендательных алгоритмов, вовлечению пользователя в потребление медиаконтента мешают многие традиционные барьеры — например, языковой. Если в сфере музыки он не столь критичен, то вот для фильмов оказывается решающим. Поэтому тот же Netflix или российская «Амедиатека» активно нанимали студии озвучки и дубляжа. Зарубежному гиганту для своих громких премьер приходилось рекрутировать до 30 команд в разных странах мира. Это очень дорого и в случае рядового контента, а не блокбастеров, с трудом окупается.
Единственный выход — субтитры. Однако если их созданием займутся переводчики-люди, то на стандартную библиотеку контента одного онлайн-кинотеатра их потребуется целая армия, но даже и в этом случае полное обеспечение качественными субтитрами займёт годы. Поэтому разумно переложить эту задачу на искусственный интеллект. 
Системы обработки естественного языка (Natural Language Processing, NLP), использующие новейшие многоязычные модели, вроде способной понимать 46 языков BLOOM, или же mGPT-3 13B от Сбера, которая может работать с 61 языком, включая такие экзотические как йоруба, бурятский или телугу, легко сгенерируют гигабайты субтитров. Схема здесь простая — один алгоритм переводит аудио в текст (speech–to–text), а другие автоматически делают перевод. 
Но самое главное, в чем всегда состоит огромная трудность — это синхронизация субтитров с движениями губ актеров и ведущих в фильмах и шоу. Даже незначительная задержка в представлении субтитров может привести к тому, что они окажутся рассинхронизированными со звуком и мимикой. Так происходит из-за разной средней длины слов и предложений, например, в английском, русском и финском языках.
И вот тут искусственный интеллект также окажет существенную помощь — за счет подбора слов и фраз, максимально близких по смыслу, но укладывающихся в прокрустово ложе реплик на экране. Впрочем, как и в большинстве других задач, финальное слово в деле создания субтитров за человеком. Профессиональный редактор должен вычитать и проверить готовый продукт от ИИ, исправив возможные ошибки или несостыковки. 
Расширенная реальность
В завершение хочется сказать — и с искренней гордостью, — что российские онлайн-кинотеатры и технологические компании, например, уже упомянутый «Кинопоиск HD», предлагают своим пользователям за счет искусственного интеллекта серьезно расширить и дополнить зрительский опыт. Благодаря технологии DeepDive можно поставить фильм на паузу, распознать лицо в кадре и узнать, как зовут актёра. Сначала DeepDive работал только в веб-версии и приложениях для Smart TV. А с 2021 года его можно использовать и на смартфонах с iOS и Android.
Также в конце 2021 года в «Кинопоиск HD» появилась еще более интересное нововведение — «Музыка в кадре». Нажав на соответствующую кнопку, можно не только узнать название мелодии и ее автора, но и сразу найти соответствующую композицию и добавить в свой плейлист. А это, конечно же, повлияет и на систему рекомендаций.
Можно предположить, что в дальнейшем от таких относительно простых (в плане результата, но не алгоритмов под капотом) систем «дополненного контента», мы дойдем до того, что ИИ будет распознавать скрытые аллюзии в кадре (например, на картины известных мастеров в творчестве Стэнли Кубрика), киноцитаты, а также давать контекстные справки об истории и культуре реальных мест или о вымышленных мирах. В чем-то это будет напоминать книгофильмы из Вселенной «Дюны» и, с одной стороны, может изменить практику линейного просмотра фильмов, а с другой дополнить ее и преобразовать, улучшив понимание происходящего на экране. 
Впрочем, что касается линейного просмотра, то здесь уже совершил переворот Netflix, выпустив интерактивный эпизод «Брандашмыг» сериала «Черное зеркало». В нем пользователь может управлять развитием сюжета и концовкой фильма, выбирая тот или иной поворот в отдельных эпизодах. Получилось своеобразное сочетание кино и квеста, интересное скорее как разовый эксперимент. И хотя пока ИИ к этому отношения не имеет, но, вполне возможно, в будущем интерактивное кино скорее будет напоминать игры, где зритель окажется протагонистом в истории, а противостоящие ему антагонисты станут управляться ИИ. В общем — парк «Мир Дикого Запада», но только на экране в уютной квартире или в шлеме виртуальной реальности внутри камеры симуляции физического окружения.
Источник
При использовании материалов с сайта активная ссылка на него обязательна
Меню
Архив материалов
Проекты наших читателей
Контакты исследователей
Подписка на новости
Проекты
Новости криптозоологии
Хроники природных катастроф
Новости
26.02.2002 - 05.07.2002
05.08.2002 - 23.10.2002 (562)
24.10.2002 - 17.01.2003 (585)
20.01.2003 - 07.04.2003 (709)
08.04.2003 - 01.08.2003 (709)
04.08.2003 - 18.11.2003 (763)
19.11.2003 - 31.03.2004 (721)
01.04.2004 - 13.08.2004 (825)
16.08.2004 - 22.11.2004 (782)
23.11.2004 - 28.03.2005 (756)
29.03.2005 - 29.07.2005 (807)
30.08.2005 - 02.12.2005 (927)
05.12.2005 - 21.04.2006 (912)
24.04.2006 - 23.10.2006 (999)
24.10.2006 - 03.05.2007 (999)
04.05.2007 - 28.01.2008 (999)
29.01.2008 - 12.01.2009 (999)
13.01.2009 - 07.07.2009 (966)
22.08.2009 - 21.01.2010 (996)
22.01.2010 - 22.06.2010 (1000)
23.06.2010 - 14.01.2011 (1042)
17.01.2011 - 31.05.2011 (1008)
01.06.2011 - 03.11.2011 (1003)
07.11.2011 - 16.03.2012 (996)
19.03.2012 - 09.06.2012 (1009)
13.06.2012 - 07.09.2012 (988)
10.09.2012 - 19.11.2012 (1004)
20.11.2012 - 14.01.2013 (1015)
15.01.2013 - 22.02.2013 (1000)
23.02.2013 - 08.04.2013 (991)
09.04.2013 - 31.05.2013 (1015)
01.06.2013 - 18.07.2013 (992)
19.07.2013 - 03.09.2013 (1014)
04.09.2013 - 20.10.2013 (1001)
21.10.2013 - 02.12.2013 (1001)
03.12.2013 - 18.01.2014 (997)
19.01.2014 - 07.03.2014 (994)
08.03.2014 - 24.04.2014 (1000)
25.04.2014 - 18.06.2014 (1005)
19.06.2014 - 15.08.2014 (1019)
16.08.2014 - 07.10.2014 (1006)
08.10.2014 - 16.11.2014 (995)
17.11.2014 - 25.12.2014 (1004)
26.12.2014 - 09.02.2015 (989)
10.02.2015 - 20.03.2015 (998)
21.03.2015 - 22.04.2015 (1001)
23.04.2015 - 29.05.2015 (997)
29.05.2015 - 30.06.2015 (995)
30.06.2015 - 29.07.2015 (990)
29.07.2015 - 26.08.2015 (998)
27.08.2015 - 24.09.2015 (988)
25.09.2015 - 22.10.2015 (991)
23.10.2015 - 18.11.2015 (1000)
18.11.2015 - 16.12.2015 (990)
17.12.2015 - 23.01.2016 (1000)
24.01.2016 - 25.02.2016 (1000)
26.02.2016 - 24.03.2016 (1000)
24.03.2016 - 16.04.2016 (990)
17.04.2016 - 19.05.2016 (999)
20.05.2016 - 22.06.2016 (993)
23.06.2016 - 01.08.2016 (995)
02.08.2016 - 12.09.2016 (990)
13.09.2016 - 25.10.2016 (989)
26.10.2016 - 05.12.2016 (995)
06.12.2016 - 15.01.2017 (995)
16.01.2017 - 23.02.2017 (990)
24.02.2017 - 03.04.2017 (994)
04.04.2017 - 18.05.2017 (1000)
19.05.2017 - 05.07.2017 (1000)
06.07.2017 - 24.08.2017 (1000)
25.08.2017 - 06.10.2017 (991)
07.10.2017 - 15.11.2017 (990)
16.11.2017 - 24.12.2017 (1000)
25.12.2017 - 04.02.2018 (990)
05.02.2018 - 17.03.2018 (1000)
18.03.2018 - 02.05.2018 (990)
03.05.2018 - 11.06.2018 (1000)
12.06.2018 - 18.07.2018 (990)
19.07.2018 - 24.08.2018 (1000)
25.08.2018 - 02.10.2018 (1000)
03.10.2018 - 07.11.2018 (990)
08.11.2018 - 13.12.2018 (990)
14.12.2018 - 23.01.2019 (1000)
24.01.2019 - 02.03.2019 (1000)
03.03.2019 - 12.04.2019 (1010)
13.04.2019 - 23.05.2019 (990)
24.05.2019 - 03.07.2019 (1000)
04.07.2019 - 11.08.2019 (1000)
12.08.2019 - 16.09.2019 (990)
17.09.2019 - 26.10.2019 (1000)
27.10.2019 - 12.12.2019 (1000)
13.12.2019 - 25.01.2020 (1000)
26.01.2020 - 06.03.2020 (990)
07.03.2020 - 16.04.2020 (1010)
17.04.2020 - 19.05.2020 (1000)
20.05.2020 - 25.06.2020 (990)
26.06.2020 - 04.08.2020 (995)
05.08.2020 - 16.09.2020 (1005)
17.09.2020 - 26.10.2020 (990)
27.10.2020 - 27.11.2020 (990)
28.11.2020 - 07.01.2021 (990)
08.01.2021 - 15.02.2021 (1000)
16.02.2021 - 31.03.2021 (1000)
01.04.2021 - 12.05.2021 (1000)
13.05.2021 - 14.06.2021 (990)
15.06.2021 - 26.07.2021 (980)
27.07.2021 - 31.08.2021 (990)
01.09.2021 - 07.10.2021 (1000)
08.09.2021 - 07.11.2021 (1000)
08.11.2021 - 10.12.2021 (1000)
11.12.2021 - 24.01.2022 (990)
25.01.2022 - 04.03.2022 (1000)
05.03.2022 - 10.04.2022 (990)
11.04.2022 - 17.05.2022 (1000)
18.05.2022 - 23.06.2022 (980)
24.06.2022 - 31.07.2022 (990)
01.08.2022 - 13.09.2022 (990)
14.09.2022 - 21.10.2022 (990)
22.10.2022 - 29.11.2022 (1000)
30.11.2022 - 22.01.2023 (1000)
23.01.2023 - 02.03.2023 (990)
03.03.2023 - 21.04.2023 (1000)
22.04.2023 - 13.06.2023 (990)
14.06.2023 - 02.08.2023 (1000)
03.08.2023 - 21.09.2023 (1000)
22.09.2023 - 06.11.2023 (990)
07.11.2023 - 24.12.2023 (990)
25.12.2023 - 18.02.2024 (1000)
19.02.2024 - 05.04.2024 (990)
06.04.2024 - 25.05.2024 (1000)
26.05.2024 - 26.07.2024 (1000)
26.07.2024 - 25.08.2024 (990)
26.08.2024 - 28.09.2024 (980)
29.09.2024 - 01.11.2024 (1000)
02.11.2024 - 02.12.2024 (980)
03.12.2024 - 08.01.2025 (990)
09.01.2025 - 09.02.2025 (1000)
10.02.2025 - 20.03.2025 (1000)
21.03.2025 - 03.05.2025 (990)
04.05.2025 - ...
Статьи
Статьи: раздел 1 (1024)
Статьи: раздел 2 (1006)
Статьи: раздел 3 (1000)
Статьи: раздел 4 (1044)
Статьи: раздел 5 (1001)
Статьи: раздел 6 (1000)
Статьи: раздел 7 (1000)
Статьи: раздел 8 (1013)
Статьи: раздел 9 (1000)
Статьи: раздел 10 (1000)
Статьи: раздел 11 (329)
Статьи: раздел 12 (1000)
Статьи: раздел 13 (730)
Лента новостей

Вероятность погибнуть от удара астероида

Верующие видят лицо Иисуса на Туринской плащанице

Генетическое тестирование инопланетных мумий

Заметили пробуждение сверхмассивной черной дыры

Исследование бурного прошлого Венеры

Кролики-франкенштейны захватывают США

Медленно вращающиеся ореолы темной материи

Метеорит Джорджии на 20 млн лет старше самой Земли

Механизм, который восстановит ваши глаза

НАСА призывают отправить сообщение объекту 3I/ATLAS

Одна сторона Земли теряет тепло гораздо быстрее

Описание проверки оборотней в Пентагоне

Пентагон пытается разоблачить объект Агуадильи

Полная картина ночных облаков на Марсе

Потрясающий вид на третьего межзвездного гостя

Проще ли добывать астероиды на Луне, чем сами астероиды

Разгадали тайну пропажи космической серы

Сняли невидимый глазом НЛО

Тайна катастрофы Амелии Эрхарт может быть раскрыта

Утаенные данные о вторжении НЛО на Восточное побережье

Анализ и присвоение названия новому метеориту

Встреча с зелеными человечками в Кентукки

Зафиксировали самый удаленный быстрый радиовсплеск

Зонд Люси мог бы посетить еще один астероид

ИИ научился быть злым без чьих-либо указаний

Кинолог запечатлел очень быстрый НЛО

Метеорит пробил дыру в крыше дома в Джорджии

Мужчина, выгуливая свою собаку, запечатлел НЛО

На экзолунах у Альфа Центавра может быть жизнь

Планеты, на которых нет воды, могут производить жидкости

Появление новой статуи на острове Пасхи

Пропавший самолет Амелии Эрхарт найден

Пугающая информация о таинственном межзвездном объекте

Расы инопланетян, о которых известно властям США

Сфера Дайсона поможет воскрешать мертвых

Сходство между околосмертными переживаниями и наркотиками

Туринская плащаница. Это кто-то другой, а не Иисус

Физический варп-двигатель возможен

Черный куб замечен над базой ВВС Райт-Паттерсон

Шокирующее открытие после падения метеорита в Джорджии

База инопланетян в кратере Лаут на Марсе

Видел ли Дональд Трамп НЛО

Древние постройки обнаружили на Меркурии

Завод по производству лунного кирпича

Загадочная комета, прилетевшая из другой системы

НАСА изучает загадочную межзвездную комету

Научились превращать ртуть в золото

НЛО заметили над штатом Нью-Джерси

НЛО наблюдает за семьей в Индии

НЛО оставляет дымный след над Невадой

Обнаружена самая массивная черная дыра

Обнаружены первые звезды Вселенной

Существуют четыре различных вида инопланетян

США используют технологии инопланетян

Таинственный гигант, скрывающийся за черными дырами

Три фигуры появляются на Солнце

Удивительный полет к черной дыре

Федеральный советник по науке призывает изучать НЛО

Экзопланета у ближайшей солнцеподобной звезды

Экзотические вихри на картине 'Звездная ночь'

Гигантский пузырь звезды-сверхгиганта удивляет

Когда марсианский грунт распадется на части

Космическая гонка касается не только крупных стран

Криптотерриториальная гипотеза

Литологические особенности ландшафта Марса

Молодая звезда начинает взрываться

НАСА спешит разместить ядерные реакторы на Луне и Марсе

НАСА ускоренно разрабатывает лунный реактор

Недавние вулканические и термальные изменения на Марсе

Поиск жизни на Марсе был явной целью астросообщества

Почему кабинет Трампа дает разные ответы о НЛО

С помощью ChatGPT пишется все больше научных статей

Самая ранняя черная дыра во Вселенной

Свидетельства о кровавом ритуале на Туринской плащанице

Столкновение облаков приводит к вездообразованию

Тайна Бермудского треугольника раскрыта

Тайны космического винограда

Тайны протопланетных дисков

Что нужно знать о Лох-Несском чудовище

Шестеро преемников могли бы исследовать Марс

Бесконечная зима в Европе все ближе

Библейские руины - ключ к тайне Ковчега завета

Библейское море становится кроваво-красным

Власти США знают о четырех расах инопланетян

Изображение Плащаницы сделано со скульптуры

Конгрессмен рассказал об инопланетянах

Миру следует разработать политику в области НЛО

На Марсе нашли совершенно новый минерал

Наблюдение за НЛО в Уилтшире

Новые подсказки в поисках Восьмого чуда

Обнаружена экзопланета в обитаемой зоне Альфы Центавра

Популярные места для наблюдения НЛО в США

Страх охватил деревни в Австралии из-за НЛО

Существо в реке Хан в Сеуле стало вирусным

Тайна Атлантиды становится все более загадочной

Тайна человеческого сердца Леонардо да Винчи

Тулси Габбард возрождает теорию заговора о НЛО

Ученые предсказывают Конец света

Центр изучения НЛО открывает набор учителей

Что означает интерес Джей Ди Вэнса к НЛО

Безумный план посетить черную дыру

Загадочные временные явления в тени Земли

Загадочный межзвездный обьект - инопланетный корабль

Закрыли изучавший телепортацию институт МГУ

Заметили облако в форме рестлера Халка Хогана

Затонувший город расскажет о Ноевом ковчеге

Межзвездная экспедиция к черной дыре

Межзвездный объект имеет разумный дизайн

Мрачное предупреждением о 15 годах антиутопии

НЛО сняли в холмах Малверн

Новое открытие в Туринской плащаницы

Новый вид физики, не виданный ранее

Новый окрас кошек противоречит генетическим ожиданиям

Пилот уверен, что нашел самолет Амелии Эрхарт

Признаки древней жизни на Красной планете

Самое странное кольцо Сатурна

Суперинтеллект роботов может привести к Апокалипсису

Существуют другие видео маневров НЛО у Нимица

Сфера Буга - часть скрытой планетарной сети

Таинственные шары требуют научного изучения

Мраморные памятники фото и цена

Автомобилист принял телескоп за НЛО

Великая пирамида на тысячелетия старше фараонов

Вера в возможность существования внеземной жизни

Давайте сохраним Луну

Директор национальной разведки рассказала о НЛО

Доказательство приземления НЛО тысячи лет назад

ИИ ChatGPT превратили в похитителя данных

ИИ вскоре получит контроль над ядерным оружием

Инопланетный зонд нужно изучить

Инопланетяне живут рядом с нами

Направляясь к системе Проксимы Центавра

Огромный подводный город недалеко от Ноева ковчега

Орбита - игровая площадка для миллиардеров

Планеты-изгои могут образовывать планетные системы

Познакомьтесь с черными дырами среднего размера

Путешествие к экзопланете может занять 250 лет

Суперсталь выведет термоядерный синтез на новый уровень

Там могут быть инопланетяне

Теории о происхождении темной материи

Футуристический корабль для полета к звездам

Безумная теория астрофизика

Бесследное исчезновение самолета у Австралии

Взгляните на индонезийский фестиваль НЛО

Все люди могут быть пришельцами с Марса

Деревушка в Шотландии - столица НЛО Великобритании

Зеленый НЛО, похожий на кальмара, над Далласом

Кто первым построит ядерный реактор на Луне

Люди развили две ноги не для того, чтобы бегать

Металлический шар над вулканом в Мексике

Мужчина установил связь с умершим сыном

Нечто в доме приставало по ночам к девочкам

НЛО оказался зеркалом телескопа

НЛО потерпел крушение у Стокгольма

Стоит ли бояться приближающейся кометы

Странное лицо на горе в Чили

Страшное предупреждение Хокинга об НЛО

Таинственный межзвездный объект неестественен

Уфологи пытаются реформировать Великобританию

Хокинг нас предупреждал

Хронология Великой пирамиды не верна

Перепланировка нежилого помещения. Законность и порядок действий

Библейское предупреждение о конце света

Вращение Земли таинственным образом ускорилось

Загадочное лицо на вершине горы в Чили

ИИ самостоятельно обнаружил уязвимости в ПО

Конгрессмена проинформировали об инопланетянах

Консультация, данная разоблачителю Дэвиду Грушу

Криптозоолог занялся политикой

Лох-Несское чудовище выглядит иначе

НЛО вызвали переполох в Индии

Отпечаток пальца библейского персонажа

Повернуть время вспять и стереть ошибки

Провал ключевой для колонизации Луны миссии

Связь между депрессией и датой рождения

США намерены оккупировать Луну

Теория о подозрительной активности в космосе

Трюк с квантовой запутанностью

Уфолог ушел в политику

Уфологи обнаружили базу инопланетян

Фильм 'Пришельцы в Америке - дело Паскагулы'

Экзопланеты подсказали размер и состав Планеты Х

Aвcтpaлийcкaя aнoмaльнaя зoнa нaпoминaeт o ceбe

Будущее астрономии на Луне

Вирусное видео с НЛО над Далласом

Вице-президент США хочет исследовать феномен НЛО

Наверх
Яндекс.Метрика