Сколько данных нужно для искусственного интеллекта
Одна из фундаментальных проблем при создании эффективных моделей машинного обучения — определение необходимого и достаточного количества данных для их обучения. Слишком мало данных — модель будет неточной, слишком много — неоправданные затраты времени и ресурсов на сбор и обработку информации. Ученые из МФТИ предложили два новых метода для решения этой задачи, основанных на анализе функции правдоподобия с использованием техники бутстрэпа.
Работа опубликована в журнале Computational Mathematics and Mathematical Physics. Правдоподобием называют функцию, которая показывает, насколько вероятны наблюдаемые данные при заданных параметрах модели. В машинном обучении часто максимизируют эту функцию (или ее логарифм – логарифмическую функцию правдоподобия), чтобы найти наилучшие параметры модели.
Вопрос «сколько данных достаточно?» стар как само машинное обучение. От ответа на него напрямую зависит качество прогнозов модели, ее способность обобщать информацию и корректно работать на новых, ранее не просмотренных ею данных, а также экономическая целесообразность всего проекта.
Исторически сложилось несколько подходов к определению достаточного размера выборки. Во-первых, это классические статистические методы. Такие подходы часто опираются на проверку конкретных статистических гипотез о параметрах модели. Например, исследователи могут потребовать, чтобы модель достигала определенной статистической мощности (способности обнаружить эффект, если он есть) при заданном уровне ошибки первого рода (вероятности ложноположительного срабатывания). К таким методам относятся тест множителей Лагранжа, тест отношения правдоподобия, статистика Вальда. Основной их недостаток – они требуют сильных предположений о распределении данных и часто привязаны к конкретным гипотезам, что не всегда удобно на практике.
Во-вторых, это байесовские методы. В них размер выборки определяется, например, путем максимизации ожидаемой “полезности” модели, которая может учитывать как точность оценки параметров, так и штрафы за увеличение выборки. Используются различные критерии, такие как минимизация средней апостериорной дисперсии параметров, критерий среднего покрытия и другие. Эти методы гибки, но могут быть сложны в реализации и интерпретации, а также требуют задания априорных распределений для параметров модели, которые не всегда адекватно можно оценить.
В-третьих, используют множество эвристических методов, которые основаны на практическом опыте, эмпирических правилах (например, «10 объектов на каждую переменную») или методах вроде кросс-валидации (перекрестной проверки). Они просты, но не имеют строгого теоретического обоснования и не всегда гарантируют оптимальный результат.
Несмотря на разнообразие подходов, универсального, простого в применении и теоретически обоснованного метода для широкого класса задач до сих пор не существовало. Многие существующие техники либо сложны, либо требуют априорной информации, которой у исследователя может не быть на этапе планирования эксперимента. И все они не всегда гарантируют результат.
Именно проблему разработки более универсальных и практически применимых методов определения достаточного размера выборки решали исследователи из МФТИ. Их идея основана на интуитивном предположении: если данных уже достаточно, то добавление еще нескольких объектов не должно сильно менять ни саму модель, ни ее «уверенность» в данных, выраженную через функцию правдоподобия. Целью исследования ученых Физтеха была разработка критериев достаточности выборки, которые основаны на поведении функции правдоподобия при изменении размера обучающей подвыборки, и оценка их работоспособности в теории и на практике.
Авторы статьи предложили два критерия, основанных на анализе значений функции правдоподобия, вычисленной на подвыборках разного размера k, полученных с помощью бутстрэпа из исходной выборки некоторого размера m.
Первый критерий они назвали D-достаточностью, от слова “дисперсия”. Этот критерий проверяет, стабильны ли результаты при использовании разных подмножеств данных одного размера. Он заключается в том, чтобы считать выборку достаточной в том случае, если разброс значений правдоподобия между моделями, которые обучены на разных случайных подвыборках размера k, достаточно мал.
Второй критерий они назвали M-достаточностью, от «математическое ожидание». M-критерий проверяет, перестала ли модель существенно улучшаться при добавлении еще одного объекта данных. Если средний показатель правдоподобия при добавлении одного элемента данных почти не улучшился, то это значит, что выборка уже является достаточной.
Оба подхода используют бутстрэп для получения надежных оценок этой стабильности или улучшения. Бутстрэп — это статистический метод, позволяющий оценить различные характеристики некоторой статистики путем многократного извлечения подвыборок с возвращением из исходной выборки. Проще говоря, мы много раз «вытаскиваем наугад» объекты из нашего набора данных (причем один и тот же объект может быть выбран несколько раз в одну подвыборку), формируя множество «псевдо-выборок», и на них оцениваем интересующие нас величины.
Важным результатом работы является теоретическое доказательство корректности критерия M-достаточности для модели линейной регрессии при определенных условиях сходимости оценок параметров модели. Это придает методу дополнительную строгость, хотя бы для одного важного класса моделей.
Ученые провели вычислительные эксперименты как на синтетических данных (сгенерированных из моделей линейной и логистической регрессии), так и на реальных наборах данных (включая известный набор Liver Disorders и множество других).
Эмпирические результаты в виде численного моделирования использования метода подтвердили работоспособность обоих подходов. На практике оказалось, что предложенный подход можно эвристически применять даже в тех случаях, когда оптимизируется не функция правдоподобия, а некоторая другая функция потерь, что часто встречается в современном машинном обучении.
Эксперименты показали, что методы успешно применимы к разным типам данных и моделей (регрессия, классификация).
Хотя бутстрэп сам по себе известен, его применение для оценки именно стабильности правдоподобия как критерия достаточности выборки является новым. Предложенный учеными подход является универсальным, так как он не привязан к конкретным статистическим гипотезам и может быть применен к широкому кругу моделей, включая те, где оптимизируется произвольная функция потерь.
«Определение правильного объема данных — это вечный компромисс между затратами на сбор информации и качеством модели, – рассказал Андрей Грабовой, доцент кафедры интеллектуальных систем МФТИ. – Существующие методы часто либо слишком сложны в применении, либо опираются на специфические допущения о данных или модели, которые не всегда выполняются. Мы хотели предложить простой, но при этом имеющий под собой основания подход. Идея в том, чтобы посмотреть, насколько ‘устаканивается’ правдоподобие модели по мере добавления данных, используя для оценки этой стабильности бутстрэп. Наши эксперименты на синтетических и реальных данных показывают, что предложенные критерии D- и M-достаточности действительно сходятся к нулю при увеличении выборки, что подтверждает их адекватность. Мы надеемся, это поможет исследователям и практикам более уверенно планировать свои эксперименты и эффективнее использовать имеющиеся ресурсы».
Никита Киселев, студент 5-го курса МФТИ, добавил: «Наше исследование было вдохновлено эмпирическими наблюдениями: мы обнаружили, что в наших экспериментах функция правдоподобия переставала значимо изменяться при достижении определенного размера выборки. Это наблюдение побудило нас к глубокому теоретическому анализу проблемы, результаты которого представлены в данной статье. Наши выводы имеют широкое применение для различных моделей, хотя для современных нейронных сетей, включая генеративные модели, мы уже разработали более эффективные и выразительные методы, которые планируем подробно осветить в будущих работах».
Предложенные методы могут найти применение во множестве областей, где используется машинное обучение и остро стоит вопрос стоимости или возможности сбора данных. Такими являются, например, медицинские исследования, где крайне важно определить достаточное количество пациентов для клинических испытаний новых лекарств; финансовый анализ, для которого необходима оценка достаточного объема исторических данных для построения моделей кредитного скоринга, прогнозирования рынков или обнаружения мошенничества. Также предложенные методы могут иметь применения в обработке данных в социологии, маркетинге, промышленности, биоинформатике, в разработке систем искусственного интеллекта.
Работа ученых из МФТИ открывает несколько направлений для будущих исследований. Это и более углубленный теоретический анализ предложенных методов с целью строго доказать их корректность, и использование других метрик стабильности, разработка других похожих алгоритмов, сравнение с другими методами, исследование влияния гиперпараметров – как на эффективность метода влияют выбор порога и число используемых подвыборок для бутстрэпа.
Источник
При использовании материалов с сайта активная ссылка на него обязательна
Меню
Архив материалов
Проекты наших читателей
Контакты исследователей
Подписка на новости
Проекты
Новости криптозоологии
Хроники природных катастроф
Новости
26.02.2002 - 05.07.2002
05.08.2002 - 23.10.2002 (562)
24.10.2002 - 17.01.2003 (585)
20.01.2003 - 07.04.2003 (709)
08.04.2003 - 01.08.2003 (709)
04.08.2003 - 18.11.2003 (763)
19.11.2003 - 31.03.2004 (721)
01.04.2004 - 13.08.2004 (825)
16.08.2004 - 22.11.2004 (782)
23.11.2004 - 28.03.2005 (756)
29.03.2005 - 29.07.2005 (807)
30.08.2005 - 02.12.2005 (927)
05.12.2005 - 21.04.2006 (912)
24.04.2006 - 23.10.2006 (999)
24.10.2006 - 03.05.2007 (999)
04.05.2007 - 28.01.2008 (999)
29.01.2008 - 12.01.2009 (999)
13.01.2009 - 07.07.2009 (966)
22.08.2009 - 21.01.2010 (996)
22.01.2010 - 22.06.2010 (1000)
23.06.2010 - 14.01.2011 (1042)
17.01.2011 - 31.05.2011 (1008)
01.06.2011 - 03.11.2011 (1003)
07.11.2011 - 16.03.2012 (996)
19.03.2012 - 09.06.2012 (1009)
13.06.2012 - 07.09.2012 (988)
10.09.2012 - 19.11.2012 (1004)
20.11.2012 - 14.01.2013 (1015)
15.01.2013 - 22.02.2013 (1000)
23.02.2013 - 08.04.2013 (991)
09.04.2013 - 31.05.2013 (1015)
01.06.2013 - 18.07.2013 (992)
19.07.2013 - 03.09.2013 (1014)
04.09.2013 - 20.10.2013 (1001)
21.10.2013 - 02.12.2013 (1001)
03.12.2013 - 18.01.2014 (997)
19.01.2014 - 07.03.2014 (994)
08.03.2014 - 24.04.2014 (1000)
25.04.2014 - 18.06.2014 (1005)
19.06.2014 - 15.08.2014 (1019)
16.08.2014 - 07.10.2014 (1006)
08.10.2014 - 16.11.2014 (995)
17.11.2014 - 25.12.2014 (1004)
26.12.2014 - 09.02.2015 (989)
10.02.2015 - 20.03.2015 (998)
21.03.2015 - 22.04.2015 (1001)
23.04.2015 - 29.05.2015 (997)
29.05.2015 - 30.06.2015 (995)
30.06.2015 - 29.07.2015 (990)
29.07.2015 - 26.08.2015 (998)
27.08.2015 - 24.09.2015 (988)
25.09.2015 - 22.10.2015 (991)
23.10.2015 - 18.11.2015 (1000)
18.11.2015 - 16.12.2015 (990)
17.12.2015 - 23.01.2016 (1000)
24.01.2016 - 25.02.2016 (1000)
26.02.2016 - 24.03.2016 (1000)
24.03.2016 - 16.04.2016 (990)
17.04.2016 - 19.05.2016 (999)
20.05.2016 - 22.06.2016 (993)
23.06.2016 - 01.08.2016 (995)
02.08.2016 - 12.09.2016 (990)
13.09.2016 - 25.10.2016 (989)
26.10.2016 - 05.12.2016 (995)
06.12.2016 - 15.01.2017 (995)
16.01.2017 - 23.02.2017 (990)
24.02.2017 - 03.04.2017 (994)
04.04.2017 - 18.05.2017 (1000)
19.05.2017 - 05.07.2017 (1000)
06.07.2017 - 24.08.2017 (1000)
25.08.2017 - 06.10.2017 (991)
07.10.2017 - 15.11.2017 (990)
16.11.2017 - 24.12.2017 (1000)
25.12.2017 - 04.02.2018 (990)
05.02.2018 - 17.03.2018 (1000)
18.03.2018 - 02.05.2018 (990)
03.05.2018 - 11.06.2018 (1000)
12.06.2018 - 18.07.2018 (990)
19.07.2018 - 24.08.2018 (1000)
25.08.2018 - 02.10.2018 (1000)
03.10.2018 - 07.11.2018 (990)
08.11.2018 - 13.12.2018 (990)
14.12.2018 - 23.01.2019 (1000)
24.01.2019 - 02.03.2019 (1000)
03.03.2019 - 12.04.2019 (1010)
13.04.2019 - 23.05.2019 (990)
24.05.2019 - 03.07.2019 (1000)
04.07.2019 - 11.08.2019 (1000)
12.08.2019 - 16.09.2019 (990)
17.09.2019 - 26.10.2019 (1000)
27.10.2019 - 12.12.2019 (1000)
13.12.2019 - 25.01.2020 (1000)
26.01.2020 - 06.03.2020 (990)
07.03.2020 - 16.04.2020 (1010)
17.04.2020 - 19.05.2020 (1000)
20.05.2020 - 25.06.2020 (990)
26.06.2020 - 04.08.2020 (995)
05.08.2020 - 16.09.2020 (1005)
17.09.2020 - 26.10.2020 (990)
27.10.2020 - 27.11.2020 (990)
28.11.2020 - 07.01.2021 (990)
08.01.2021 - 15.02.2021 (1000)
16.02.2021 - 31.03.2021 (1000)
01.04.2021 - 12.05.2021 (1000)
13.05.2021 - 14.06.2021 (990)
15.06.2021 - 26.07.2021 (980)
27.07.2021 - 31.08.2021 (990)
01.09.2021 - 07.10.2021 (1000)
08.09.2021 - 07.11.2021 (1000)
08.11.2021 - 10.12.2021 (1000)
11.12.2021 - 24.01.2022 (990)
25.01.2022 - 04.03.2022 (1000)
05.03.2022 - 10.04.2022 (990)
11.04.2022 - 17.05.2022 (1000)
18.05.2022 - 23.06.2022 (980)
24.06.2022 - 31.07.2022 (990)
01.08.2022 - 13.09.2022 (990)
14.09.2022 - 21.10.2022 (990)
22.10.2022 - 29.11.2022 (1000)
30.11.2022 - 22.01.2023 (1000)
23.01.2023 - 02.03.2023 (990)
03.03.2023 - 21.04.2023 (1000)
22.04.2023 - 13.06.2023 (990)
14.06.2023 - 02.08.2023 (1000)
03.08.2023 - 21.09.2023 (1000)
22.09.2023 - 06.11.2023 (990)
07.11.2023 - 24.12.2023 (990)
25.12.2023 - 18.02.2024 (1000)
19.02.2024 - 05.04.2024 (990)
06.04.2024 - 25.05.2024 (1000)
26.05.2024 - 26.07.2024 (1000)
26.07.2024 - 25.08.2024 (990)
26.08.2024 - 28.09.2024 (980)
29.09.2024 - 01.11.2024 (1000)
02.11.2024 - 02.12.2024 (980)
03.12.2024 - 08.01.2025 (990)
09.01.2025 - 09.02.2025 (1000)
10.02.2025 - 20.03.2025 (1000)
21.03.2025 - 03.05.2025 (990)
04.05.2025 - ...
Статьи
Статьи: раздел 1 (1024)
Статьи: раздел 2 (1006)
Статьи: раздел 3 (1000)
Статьи: раздел 4 (1044)
Статьи: раздел 5 (1001)
Статьи: раздел 6 (1000)
Статьи: раздел 7 (1000)
Статьи: раздел 8 (1013)
Статьи: раздел 9 (1000)
Статьи: раздел 10 (1000)
Статьи: раздел 11 (329)
Статьи: раздел 12 (1000)
Статьи: раздел 13 (730)
Лента новостей

Вероятность погибнуть от удара астероида

Верующие видят лицо Иисуса на Туринской плащанице

Генетическое тестирование инопланетных мумий

Заметили пробуждение сверхмассивной черной дыры

Исследование бурного прошлого Венеры

Кролики-франкенштейны захватывают США

Медленно вращающиеся ореолы темной материи

Метеорит Джорджии на 20 млн лет старше самой Земли

Механизм, который восстановит ваши глаза

НАСА призывают отправить сообщение объекту 3I/ATLAS

Одна сторона Земли теряет тепло гораздо быстрее

Описание проверки оборотней в Пентагоне

Пентагон пытается разоблачить объект Агуадильи

Полная картина ночных облаков на Марсе

Потрясающий вид на третьего межзвездного гостя

Проще ли добывать астероиды на Луне, чем сами астероиды

Разгадали тайну пропажи космической серы

Сняли невидимый глазом НЛО

Тайна катастрофы Амелии Эрхарт может быть раскрыта

Утаенные данные о вторжении НЛО на Восточное побережье

Анализ и присвоение названия новому метеориту

Встреча с зелеными человечками в Кентукки

Зафиксировали самый удаленный быстрый радиовсплеск

Зонд Люси мог бы посетить еще один астероид

ИИ научился быть злым без чьих-либо указаний

Кинолог запечатлел очень быстрый НЛО

Метеорит пробил дыру в крыше дома в Джорджии

Мужчина, выгуливая свою собаку, запечатлел НЛО

На экзолунах у Альфа Центавра может быть жизнь

Планеты, на которых нет воды, могут производить жидкости

Появление новой статуи на острове Пасхи

Пропавший самолет Амелии Эрхарт найден

Пугающая информация о таинственном межзвездном объекте

Расы инопланетян, о которых известно властям США

Сфера Дайсона поможет воскрешать мертвых

Сходство между околосмертными переживаниями и наркотиками

Туринская плащаница. Это кто-то другой, а не Иисус

Физический варп-двигатель возможен

Черный куб замечен над базой ВВС Райт-Паттерсон

Шокирующее открытие после падения метеорита в Джорджии

База инопланетян в кратере Лаут на Марсе

Видел ли Дональд Трамп НЛО

Древние постройки обнаружили на Меркурии

Завод по производству лунного кирпича

Загадочная комета, прилетевшая из другой системы

НАСА изучает загадочную межзвездную комету

Научились превращать ртуть в золото

НЛО заметили над штатом Нью-Джерси

НЛО наблюдает за семьей в Индии

НЛО оставляет дымный след над Невадой

Обнаружена самая массивная черная дыра

Обнаружены первые звезды Вселенной

Существуют четыре различных вида инопланетян

США используют технологии инопланетян

Таинственный гигант, скрывающийся за черными дырами

Три фигуры появляются на Солнце

Удивительный полет к черной дыре

Федеральный советник по науке призывает изучать НЛО

Экзопланета у ближайшей солнцеподобной звезды

Экзотические вихри на картине 'Звездная ночь'

Гигантский пузырь звезды-сверхгиганта удивляет

Когда марсианский грунт распадется на части

Космическая гонка касается не только крупных стран

Криптотерриториальная гипотеза

Литологические особенности ландшафта Марса

Молодая звезда начинает взрываться

НАСА спешит разместить ядерные реакторы на Луне и Марсе

НАСА ускоренно разрабатывает лунный реактор

Недавние вулканические и термальные изменения на Марсе

Поиск жизни на Марсе был явной целью астросообщества

Почему кабинет Трампа дает разные ответы о НЛО

С помощью ChatGPT пишется все больше научных статей

Самая ранняя черная дыра во Вселенной

Свидетельства о кровавом ритуале на Туринской плащанице

Столкновение облаков приводит к вездообразованию

Тайна Бермудского треугольника раскрыта

Тайны космического винограда

Тайны протопланетных дисков

Что нужно знать о Лох-Несском чудовище

Шестеро преемников могли бы исследовать Марс

Бесконечная зима в Европе все ближе

Библейские руины - ключ к тайне Ковчега завета

Библейское море становится кроваво-красным

Власти США знают о четырех расах инопланетян

Изображение Плащаницы сделано со скульптуры

Конгрессмен рассказал об инопланетянах

Миру следует разработать политику в области НЛО

На Марсе нашли совершенно новый минерал

Наблюдение за НЛО в Уилтшире

Новые подсказки в поисках Восьмого чуда

Обнаружена экзопланета в обитаемой зоне Альфы Центавра

Популярные места для наблюдения НЛО в США

Страх охватил деревни в Австралии из-за НЛО

Существо в реке Хан в Сеуле стало вирусным

Тайна Атлантиды становится все более загадочной

Тайна человеческого сердца Леонардо да Винчи

Тулси Габбард возрождает теорию заговора о НЛО

Ученые предсказывают Конец света

Центр изучения НЛО открывает набор учителей

Что означает интерес Джей Ди Вэнса к НЛО

Безумный план посетить черную дыру

Загадочные временные явления в тени Земли

Загадочный межзвездный обьект - инопланетный корабль

Закрыли изучавший телепортацию институт МГУ

Заметили облако в форме рестлера Халка Хогана

Затонувший город расскажет о Ноевом ковчеге

Межзвездная экспедиция к черной дыре

Межзвездный объект имеет разумный дизайн

Мрачное предупреждением о 15 годах антиутопии

НЛО сняли в холмах Малверн

Новое открытие в Туринской плащаницы

Новый вид физики, не виданный ранее

Новый окрас кошек противоречит генетическим ожиданиям

Пилот уверен, что нашел самолет Амелии Эрхарт

Признаки древней жизни на Красной планете

Самое странное кольцо Сатурна

Суперинтеллект роботов может привести к Апокалипсису

Существуют другие видео маневров НЛО у Нимица

Сфера Буга - часть скрытой планетарной сети

Таинственные шары требуют научного изучения

Мраморные памятники фото и цена

Автомобилист принял телескоп за НЛО

Великая пирамида на тысячелетия старше фараонов

Вера в возможность существования внеземной жизни

Давайте сохраним Луну

Директор национальной разведки рассказала о НЛО

Доказательство приземления НЛО тысячи лет назад

ИИ ChatGPT превратили в похитителя данных

ИИ вскоре получит контроль над ядерным оружием

Инопланетный зонд нужно изучить

Инопланетяне живут рядом с нами

Направляясь к системе Проксимы Центавра

Огромный подводный город недалеко от Ноева ковчега

Орбита - игровая площадка для миллиардеров

Планеты-изгои могут образовывать планетные системы

Познакомьтесь с черными дырами среднего размера

Путешествие к экзопланете может занять 250 лет

Суперсталь выведет термоядерный синтез на новый уровень

Там могут быть инопланетяне

Теории о происхождении темной материи

Футуристический корабль для полета к звездам

Безумная теория астрофизика

Бесследное исчезновение самолета у Австралии

Взгляните на индонезийский фестиваль НЛО

Все люди могут быть пришельцами с Марса

Деревушка в Шотландии - столица НЛО Великобритании

Зеленый НЛО, похожий на кальмара, над Далласом

Кто первым построит ядерный реактор на Луне

Люди развили две ноги не для того, чтобы бегать

Металлический шар над вулканом в Мексике

Мужчина установил связь с умершим сыном

Нечто в доме приставало по ночам к девочкам

НЛО оказался зеркалом телескопа

НЛО потерпел крушение у Стокгольма

Стоит ли бояться приближающейся кометы

Странное лицо на горе в Чили

Страшное предупреждение Хокинга об НЛО

Таинственный межзвездный объект неестественен

Уфологи пытаются реформировать Великобританию

Хокинг нас предупреждал

Хронология Великой пирамиды не верна

Перепланировка нежилого помещения. Законность и порядок действий

Библейское предупреждение о конце света

Вращение Земли таинственным образом ускорилось

Загадочное лицо на вершине горы в Чили

ИИ самостоятельно обнаружил уязвимости в ПО

Конгрессмена проинформировали об инопланетянах

Консультация, данная разоблачителю Дэвиду Грушу

Криптозоолог занялся политикой

Лох-Несское чудовище выглядит иначе

НЛО вызвали переполох в Индии

Отпечаток пальца библейского персонажа

Повернуть время вспять и стереть ошибки

Провал ключевой для колонизации Луны миссии

Связь между депрессией и датой рождения

США намерены оккупировать Луну

Теория о подозрительной активности в космосе

Трюк с квантовой запутанностью

Уфолог ушел в политику

Уфологи обнаружили базу инопланетян

Фильм 'Пришельцы в Америке - дело Паскагулы'

Экзопланеты подсказали размер и состав Планеты Х

Aвcтpaлийcкaя aнoмaльнaя зoнa нaпoминaeт o ceбe

Будущее астрономии на Луне

Вирусное видео с НЛО над Далласом

Вице-президент США хочет исследовать феномен НЛО

Наверх
Яндекс.Метрика