Когда компьютеры станут умнее людей?
23 апреля 2013 года, 20:59 | Текст: Дмитрий Целиков
В июле прошлого года американский изобретатель и футуролог Рэймонд Курцвейл встретился с генеральным директором корпорации «Гугл» Ларри Пейджем, чтобы показать ему черновик своей новой книги «Как создать мышление» (How to Create a Mind). Адепт искусственного интеллекта признался, что мечтает открыть фирму, которая смогла бы построить по-настоящему умный компьютер, то есть такой, чтобы понимал человеческий язык, мог делать собственные выводы и принимать решения. Но для подобного проекта потребуются наборы данных и вычислительные мощности гугломасштаба.
Г-н Пейдж согласился сотрудничать, но заметил, что маленькая компания не справится с такой задачей. Намёк был понят, и в январе с. г. знаменитый Рэй Курцвейл, который всю жизнь работал только на себя, стал техническим директором Google. «Это кульминация моего полувекового интереса к ИИ», — считает изобретатель.
По его признанию, он соблазнился не только вычислительной мощностью корпорации, но и поразительным прогрессом, которого она достигла в области так называемого глубокого обучения (deep learning). Алгоритмы глубокого обучения пытаются имитировать деятельность нейронов в новой коре головного мозга, где осуществляется около 80% мыслительных процессов. ПО учится (в самом буквальном смысле) распознавать закономерности в звуках, изображениях и прочих данных.
Идее имитации деятельности новой коры много десятков лет, и она привела не только к прорывам, но и разочарованиям. Тем не менее математические формулы совершенствуются, а мощность компьютеров растёт, поэтому сегодня можно смоделировать работу значительного количества слоёв нейронов, и исследования продолжаются.
В июне прошлого года система глубокого обучения «Гугла», которой продемонстрировали 10 млн кадров YouTube-видео, вдвое эффективнее распознавала кошек и прочие объекты, чем другие программы. Та же технология помогла корпорации скорректировать работу приложения по распознаванию речи для мобильных телефонов. В октябре главный директор по исследованиям Microsoft Рик Рашид поразил слушателей его лекции в Китае демонстрацией ПО, которое транскрибировало его речь в английский текст с погрешностью всего в 7%, после чего переводило на китайский и синтезировало его же голос, как будто он говорит на путунхуа. Тогда же трое аспирантов и двое профессоров с помощью системы глубокого обучения выиграли конкурс, проводившийся фармацевтической компанией Merck, по идентификации молекул, которые могут привести к созданию новых лекарств. В марте с. г. «Гугл» купил стартап, основанный Джефри Хинтоном из Университета Торонто (Канада), который входил в ту победную группу.
Всё это окончательно развеяло сомнения в том, что умные машины уже покинули страницы фантастических книг. Вскоре они изменят всё, от вычислительных систем и связи до медицины, производства и транспорта. Например, компьютер Watson корпорации IBM, победивший в телевикторине Jeopardy! (прообраз отечественной «Своей игры»), учится помогать врачам ставить верные диагнозы. В голосовом поиске Windows Phone и Bing тоже задействованы алгоритмы глубокого обучения.
Вопрос сейчас в том, как вывести глубокое обучение за пределы распознавания речи и изображений. Для этого нужны совершенно иные концептуальные и программные решения, не говоря уже о вычислительной мощи. Возможно, мы никогда не увидим машин, которые будут действительно мыслить, но сегодняшние прорывы в этой области, говорит Питер Ли, возглавляющий Microsoft Research USA, по крайней мере с новой силой разожгли интерес к исследованиям ИИ.
Писать программы, рассказывающие машине о том, что такое край изображения или звук, бесперспективно — они ограничены узконаправленными приложениями, выполняющими определённые команды. Наш мозг работает иначе, и это было ясно ещё в 1950-х, когда создание ИИ только начиналось. В сильно упрощённом виде нейронные сети пытались имитировать уже тогда. Программа составляет план набора виртуальных нейронов и затем присваивает их соединениям случайные цифровые значения от нуля до единицы. Последние определяют отклик каждого нейрона на тот или иной выраженный в «цифре» объект реального мира — оттенок синего на изображении, уровень энергии на определённой частоте звука и пр.
Программисты обучают виртуальные нейронные сети распознавать предмет или звук на примере большого количества оцифрованных изображений или звуковых волн. Если система неэффективна, значения корректируются, пока она не научится всегда узнавать собаку или звук «д». Так же учатся дети: собакой принято называть объект с характерным внешним видом и поведением.
Самые ранние нейронные сети могли имитировать лишь очень небольшое количество нейронов, поэтому к 1970-м интерес к ним почти угас. Но в середине 1980-х благодаря усилиям г-на Хинтона и других исследователей появились более глубокие модели с многочисленными слоями нейронов. От программиста, впрочем, по-прежнему зависело многое: например, приходилось вручную присваивать значения каждой порции загружаемых данных, а для распознавания речи или изображений не хватало вычислительной мощности.
Фундаментального прорыва удалось добиться лишь сравнительно недавно. В 2006 году г-н Хинтон разработал более эффективный способ обучать слои нейронов. Первый учится самым простым вещам — например, понятию края изображения или мельчайшему элементу звука речи. Иными словами, он просто распознаёт комбинации пикселов или звуковых волн, которые встречаются слишком часто, чтобы быть случайными. Как только этот слой выполнил свою задачу, они передаёт собранную информацию другому, который на этом основании может научиться распознаванию более сложных вещей — например, угла или сочетания звуков. Процесс продолжается, вовлекая всё больше слоёв, пока не будет узнана конкретная фонема или найден искомый объект.
Таким объектом могут стать, к примеру, кошки. В июне прошлого года Google продемонстрировала одну из крупнейших современных нейронных сетей, которая насчитывает более миллиарда соединений. Группа во главе с профессором компьютерных наук из Стэнфорда Эндрю Нг и сотрудником «Гугла» Джефри Дином показала системе кадры из 10 млн случайно выбранных YouTube-видео. Один виртуальный нейрон фиксировал изображения котиков. Другие концентрировали внимание на человеческих лицах, жёлтых цветах и прочих объектах. И благодаря силе глубокого обучения система идентифицировала эти дискретные объекты, даже если ни один человек никак их не помечал.
Больше всего ИИ-специалистов поразил масштаб прогресса в распознавании изображений. Система правильно распределяла по категориям объекты и темы YouTube-кадров в 16% случаев, что на 70% эффективнее прежних методов. При этом, как отмечает г-н Дин, надо было выбрать из 22 тыс. категорий. И различия между ними порой были очень тонкими, как между двумя видами ската, то есть даже человек не всегда смог бы верно справиться с этой классификацией. Когда же системе предложили тысячу более общих категорий, доля правильных ответов превысила 50%.
Обучение многочисленных слоёв виртуальных нейронов потребовало 16 тыс. процессоров, что сопоставимо с размахом той инфраструктуры, которой Google обзавелась для поддержки своей поисковой системы и прочих интернет-сервисов. По меньшей мере на 80% недавний прогресс в области ИИ обязан новой вычислительной мощности, отмечает Дилип Джордж, соучредитель стартапа Vicarious.
Но одного вычислительного центра мало. Эксперимент удался благодаря успехам «Гугла» в разработке методов распределения задач между машинами для максимально быстрого решения. Г-н Дин трудился над этим 14 лет. Поэтому процесс глубокого обучения удалось ускорить, а нейронную сеть и наборы данных — увеличить.
Глубокое обучение улучшило также голосовой поиск на смартфонах. Раньше приложение для Android не понимало многие слова, но при подготовке к выпуску новой версии ОС (она увидела свет в июле прошлого года) группа г-на Дина заменила один блок ПО тем, который был основан на глубоком обучении. Поскольку многочисленные слои нейронов помогают выучить различные варианты одного и того же звука, система стала более надёжной, особенно в шумных местах (например, в метро). Буквально в одночасье количество ошибок упало на четверть, и многие наблюдатели после этого сочли данное ПО более умным, чем знаменитое приложение Siri компании Apple.
Несмотря на прогресс, не все уверены в том, что именно глубокому обучению суждено сделать ИИ конкурентом человеческого разума. По мнению скептиков, эта область исследований игнорирует многие нюансы биологии мозга в угоду грубой вычислительной силе.
Один из таких критиков — основатель компании Palm Computing Джефф Хокинс, нынешнее детище которого, Numenta, разрабатывает систему машинного обучения, которая тоже вдохновлена биологией, но не использует глубокое обучение. Она предсказывает закономерности потребления энергии и вероятность поломки машины — например, ветряной мельницы. Г-н Хокинс — автор книги «Об интеллекте» (2004), в которой несложным языком рассказывается о работе мозга и о том, как эти сведения помогут в создании умных машин. По его мнению, глубокое обучение по своей природе не может, к примеру, одарить компьютер понятием времени. Поток чувственных данных непрерывен, и способность к обучению связана с воспроизведением в памяти последовательности событий, а не с распознаванием объектов на стоп-кадрах, как это делала система «Гугла». Таким образом машина никогда не поймёт, когда кошка делает что-то забавное, а когда она не вызывает никаких эмоций.
Тем не менее вычислительные ресурсы, которые компания Google бросила в эту прорубь, невозможно игнорировать, парируют сторонники глубокого обучения. Они в любом случае важны, потому что мозг намного сложнее любой искусственной нейронной сети. Каким бы ни был подход, без своры мощных компьютеров не обойтись, полагает г-н Хинтон.
Хотя сама корпорация Google не спешит рассказать, зачем ей всё это нужно, придумать возможные приложения нетрудно. Например, поиск по изображениям очень пригодился бы YouTube, а распознавание звуков — в создании систем голосового управления на самых разных языках. Кроме того, есть автомобили без водителя, интернет-поиск и реклама.
Этими вещами как раз и очарован г-н Курцвейл. Ещё в 1965 году он написал программу для создания классической музыки в разных стилях, после чего первым разработал машину для чтения текста вслух, ПО для сканирования и оцифровки текста безотносительно шрифта, музыкальный синтезатор для воссоздания оркестровых инструментов и систему распознавания речи с богатым словарём.
Сейчас ему 65, и он мечтает о кибердруге, который подслушивает ваши телефонные разговоры, читает вашу электронную переписку и следит за каждым вашим шагом (если вы ему позволяете), чтобы встретить вас ответом ещё до того, как вы сформулируете вопрос. Никто в Google не говорит напрямую о том, что чем-то подобным может стать интернет-поиск, но в первые дни существования компании Сергей Брин признался, что ему хотелось бы создать человеколюбивый аналог компьютера HAL 9000 из фильма «Космическая одиссея 2001 года».
Пока г-н Курцвейл ломает голову над тем, как научить компьютеры понимать естественный язык и даже говорить на нём, чтобы лучше искать данные и отвечать на вопросы. Ему хочется переплюнуть Watson, который понимал самые заковыристые вопросы телевикторины. У него уже есть мыслишка о том, как графическим образом представить всю семантическую сложность языка, чтобы никакие двусмысленности не смущали компьютер.
Что-то подобное уже разработано на нижних палубах гуглогалер для корректировки синтаксиса и грамматики машинных переводов. Кроме того, компания располагает каталогом «Сеть знаний» (Knowledge Graph), в который занесены примерно 700 млн тем, локаций, людей и др., а также миллиарды связей между ними. С помощью этого сервиса поисковая система собирается самостоятельно отвечать на вопросы, а не только предъявлять ссылки на сайты с этими ответами.
Наконец, г-н Курцвейл планирует с помощью алгоритмов глубокого обучения позволить компьютерам разобраться с «тонкими границами и двусмысленностями языка». Хотите сказать, это страшно сложная задача? Так оно и есть. «Понимание естественного языка не та цель, которую в какой-то момент можно достичь, — говорит он. — Не думаю, что мне суждено завершить этот проект».
Тем не менее попытка приблизиться к этой цели, несомненно, породит самые разные приложения, не только системы распознавания речи и изображений. Вспомним викторию группы г-на Хинтона в области фармацевтики. А Питер Ли из «Майкрософта» сообщает о первых успехах глубокого обучения в области машинного зрения, то есть технологий, связанных с производственным контролем и автопилотом. Возможно, появятся индивидуальные датчики, способные предсказать надвигающиеся проблемы со здоровьем, а сенсоры, установленные по всему городу, будут предвидеть пробки на дорогах.
Там, где решается настолько сложная задача, как моделирование работы человеческого мозга, не следует ждать того, что какая-то одна технология справится со всеми проблемами. «Глубокое обучение — это лишь на редкость удачная метафора познания мира», — говорит г-н Дин.
http://science.compulenta.ru/746578/
При использовании материалов с сайта активная ссылка на него обязательна
Меню
Архив материалов
Проекты наших читателей
Контакты исследователей
Подписка на новости
Проекты
Новости криптозоологии
Хроники природных катастроф
Новости
26.02.2002 - 05.07.2002
05.08.2002 - 23.10.2002 (562)
24.10.2002 - 17.01.2003 (585)
20.01.2003 - 07.04.2003 (709)
08.04.2003 - 01.08.2003 (709)
04.08.2003 - 18.11.2003 (763)
19.11.2003 - 31.03.2004 (721)
01.04.2004 - 13.08.2004 (825)
16.08.2004 - 22.11.2004 (782)
23.11.2004 - 28.03.2005 (756)
29.03.2005 - 29.07.2005 (807)
30.08.2005 - 02.12.2005 (927)
05.12.2005 - 21.04.2006 (912)
24.04.2006 - 23.10.2006 (999)
24.10.2006 - 03.05.2007 (999)
04.05.2007 - 28.01.2008 (999)
29.01.2008 - 12.01.2009 (999)
13.01.2009 - 07.07.2009 (966)
22.08.2009 - 21.01.2010 (996)
22.01.2010 - 22.06.2010 (1000)
23.06.2010 - 14.01.2011 (1042)
17.01.2011 - 31.05.2011 (1008)
01.06.2011 - 03.11.2011 (1003)
07.11.2011 - 16.03.2012 (996)
19.03.2012 - 09.06.2012 (1009)
13.06.2012 - 07.09.2012 (988)
10.09.2012 - 19.11.2012 (1004)
20.11.2012 - 14.01.2013 (1015)
15.01.2013 - 22.02.2013 (1000)
23.02.2013 - 08.04.2013 (991)
09.04.2013 - 31.05.2013 (1015)
01.06.2013 - 18.07.2013 (992)
19.07.2013 - 03.09.2013 (1014)
04.09.2013 - 20.10.2013 (1001)
21.10.2013 - 02.12.2013 (1001)
03.12.2013 - 18.01.2014 (997)
19.01.2014 - 07.03.2014 (994)
08.03.2014 - 24.04.2014 (1000)
25.04.2014 - 18.06.2014 (1005)
19.06.2014 - 15.08.2014 (1019)
16.08.2014 - 07.10.2014 (1006)
08.10.2014 - 16.11.2014 (995)
17.11.2014 - 25.12.2014 (1004)
26.12.2014 - 09.02.2015 (989)
10.02.2015 - 20.03.2015 (998)
21.03.2015 - 22.04.2015 (1001)
23.04.2015 - 29.05.2015 (997)
29.05.2015 - 30.06.2015 (995)
30.06.2015 - 29.07.2015 (990)
29.07.2015 - 26.08.2015 (998)
27.08.2015 - 24.09.2015 (988)
25.09.2015 - 22.10.2015 (991)
23.10.2015 - 18.11.2015 (1000)
18.11.2015 - 16.12.2015 (990)
17.12.2015 - 23.01.2016 (1000)
24.01.2016 - 25.02.2016 (1000)
26.02.2016 - 24.03.2016 (1000)
24.03.2016 - 16.04.2016 (990)
17.04.2016 - 19.05.2016 (999)
20.05.2016 - 22.06.2016 (993)
23.06.2016 - 01.08.2016 (995)
02.08.2016 - 12.09.2016 (990)
13.09.2016 - 25.10.2016 (989)
26.10.2016 - 05.12.2016 (995)
06.12.2016 - 15.01.2017 (995)
16.01.2017 - 23.02.2017 (990)
24.02.2017 - 03.04.2017 (994)
04.04.2017 - 18.05.2017 (1000)
19.05.2017 - 05.07.2017 (1000)
06.07.2017 - 24.08.2017 (1000)
25.08.2017 - 06.10.2017 (991)
07.10.2017 - 15.11.2017 (990)
16.11.2017 - 24.12.2017 (1000)
25.12.2017 - 04.02.2018 (990)
05.02.2018 - 17.03.2018 (1000)
18.03.2018 - 02.05.2018 (990)
03.05.2018 - 11.06.2018 (1000)
12.06.2018 - 18.07.2018 (990)
19.07.2018 - 24.08.2018 (1000)
25.08.2018 - 02.10.2018 (1000)
03.10.2018 - 07.11.2018 (990)
08.11.2018 - 13.12.2018 (990)
14.12.2018 - 23.01.2019 (1000)
24.01.2019 - 02.03.2019 (1000)
03.03.2019 - 12.04.2019 (1010)
13.04.2019 - 23.05.2019 (990)
24.05.2019 - 03.07.2019 (1000)
04.07.2019 - 11.08.2019 (1000)
12.08.2019 - 16.09.2019 (990)
17.09.2019 - 26.10.2019 (1000)
27.10.2019 - 12.12.2019 (1000)
13.12.2019 - 25.01.2020 (1000)
26.01.2020 - 06.03.2020 (990)
07.03.2020 - 16.04.2020 (1010)
17.04.2020 - 19.05.2020 (1000)
20.05.2020 - 25.06.2020 (990)
26.06.2020 - 04.08.2020 (995)
05.08.2020 - 16.09.2020 (1005)
17.09.2020 - 26.10.2020 (990)
27.10.2020 - 27.11.2020 (990)
28.11.2020 - 07.01.2021 (990)
08.01.2021 - 15.02.2021 (1000)
16.02.2021 - 31.03.2021 (1000)
01.04.2021 - 12.05.2021 (1000)
13.05.2021 - 14.06.2021 (990)
15.06.2021 - 26.07.2021 (980)
27.07.2021 - 31.08.2021 (990)
01.09.2021 - 07.10.2021 (1000)
08.09.2021 - 07.11.2021 (1000)
08.11.2021 - 10.12.2021 (1000)
11.12.2021 - 24.01.2022 (990)
25.01.2022 - 04.03.2022 (1000)
05.03.2022 - 10.04.2022 (990)
11.04.2022 - 17.05.2022 (1000)
18.05.2022 - 23.06.2022 (980)
24.06.2022 - 31.07.2022 (990)
01.08.2022 - 13.09.2022 (990)
14.09.2022 - 21.10.2022 (990)
22.10.2022 - 29.11.2022 (1000)
30.11.2022 - 22.01.2023 (1000)
23.01.2023 - 02.03.2023 (990)
03.03.2023 - 21.04.2023 (1000)
22.04.2023 - 13.06.2023 (990)
14.06.2023 - 02.08.2023 (1000)
03.08.2023 - 21.09.2023 (1000)
22.09.2023 - 06.11.2023 (990)
07.11.2023 - 24.12.2023 (990)
25.12.2023 - 18.02.2024 (1000)
19.02.2024 - 05.04.2024 (990)
06.04.2024 - 25.05.2024 (1000)
26.05.2024 - 26.07.2024 (1000)
26.07.2024 - 25.08.2024 (990)
26.08.2024 - 28.09.2024 (980)
29.09.2024 - 01.11.2024 (1000)
02.11.2024 - 02.12.2024 (980)
03.12.2024 - 08.01.2025 (990)
09.01.2025 - 09.02.2025 (1000)
10.02.2025 - 20.03.2025 (1000)
21.03.2025 - 03.05.2025 (990)
04.05.2025 - ...
Статьи
Статьи: раздел 1 (1024)
Статьи: раздел 2 (1006)
Статьи: раздел 3 (1000)
Статьи: раздел 4 (1044)
Статьи: раздел 5 (1001)
Статьи: раздел 6 (1000)
Статьи: раздел 7 (1000)
Статьи: раздел 8 (1013)
Статьи: раздел 9 (1000)
Статьи: раздел 10 (1000)
Статьи: раздел 11 (329)
Статьи: раздел 12 (1000)
Статьи: раздел 13 (730)
Лента новостей

Вероятность погибнуть от удара астероида

Верующие видят лицо Иисуса на Туринской плащанице

Генетическое тестирование инопланетных мумий

Заметили пробуждение сверхмассивной черной дыры

Исследование бурного прошлого Венеры

Кролики-франкенштейны захватывают США

Медленно вращающиеся ореолы темной материи

Метеорит Джорджии на 20 млн лет старше самой Земли

Механизм, который восстановит ваши глаза

НАСА призывают отправить сообщение объекту 3I/ATLAS

Одна сторона Земли теряет тепло гораздо быстрее

Описание проверки оборотней в Пентагоне

Пентагон пытается разоблачить объект Агуадильи

Полная картина ночных облаков на Марсе

Потрясающий вид на третьего межзвездного гостя

Проще ли добывать астероиды на Луне, чем сами астероиды

Разгадали тайну пропажи космической серы

Сняли невидимый глазом НЛО

Тайна катастрофы Амелии Эрхарт может быть раскрыта

Утаенные данные о вторжении НЛО на Восточное побережье

Анализ и присвоение названия новому метеориту

Встреча с зелеными человечками в Кентукки

Зафиксировали самый удаленный быстрый радиовсплеск

Зонд Люси мог бы посетить еще один астероид

ИИ научился быть злым без чьих-либо указаний

Кинолог запечатлел очень быстрый НЛО

Метеорит пробил дыру в крыше дома в Джорджии

Мужчина, выгуливая свою собаку, запечатлел НЛО

На экзолунах у Альфа Центавра может быть жизнь

Планеты, на которых нет воды, могут производить жидкости

Появление новой статуи на острове Пасхи

Пропавший самолет Амелии Эрхарт найден

Пугающая информация о таинственном межзвездном объекте

Расы инопланетян, о которых известно властям США

Сфера Дайсона поможет воскрешать мертвых

Сходство между околосмертными переживаниями и наркотиками

Туринская плащаница. Это кто-то другой, а не Иисус

Физический варп-двигатель возможен

Черный куб замечен над базой ВВС Райт-Паттерсон

Шокирующее открытие после падения метеорита в Джорджии

База инопланетян в кратере Лаут на Марсе

Видел ли Дональд Трамп НЛО

Древние постройки обнаружили на Меркурии

Завод по производству лунного кирпича

Загадочная комета, прилетевшая из другой системы

НАСА изучает загадочную межзвездную комету

Научились превращать ртуть в золото

НЛО заметили над штатом Нью-Джерси

НЛО наблюдает за семьей в Индии

НЛО оставляет дымный след над Невадой

Обнаружена самая массивная черная дыра

Обнаружены первые звезды Вселенной

Существуют четыре различных вида инопланетян

США используют технологии инопланетян

Таинственный гигант, скрывающийся за черными дырами

Три фигуры появляются на Солнце

Удивительный полет к черной дыре

Федеральный советник по науке призывает изучать НЛО

Экзопланета у ближайшей солнцеподобной звезды

Экзотические вихри на картине 'Звездная ночь'

Гигантский пузырь звезды-сверхгиганта удивляет

Когда марсианский грунт распадется на части

Космическая гонка касается не только крупных стран

Криптотерриториальная гипотеза

Литологические особенности ландшафта Марса

Молодая звезда начинает взрываться

НАСА спешит разместить ядерные реакторы на Луне и Марсе

НАСА ускоренно разрабатывает лунный реактор

Недавние вулканические и термальные изменения на Марсе

Поиск жизни на Марсе был явной целью астросообщества

Почему кабинет Трампа дает разные ответы о НЛО

С помощью ChatGPT пишется все больше научных статей

Самая ранняя черная дыра во Вселенной

Свидетельства о кровавом ритуале на Туринской плащанице

Столкновение облаков приводит к вездообразованию

Тайна Бермудского треугольника раскрыта

Тайны космического винограда

Тайны протопланетных дисков

Что нужно знать о Лох-Несском чудовище

Шестеро преемников могли бы исследовать Марс

Бесконечная зима в Европе все ближе

Библейские руины - ключ к тайне Ковчега завета

Библейское море становится кроваво-красным

Власти США знают о четырех расах инопланетян

Изображение Плащаницы сделано со скульптуры

Конгрессмен рассказал об инопланетянах

Миру следует разработать политику в области НЛО

На Марсе нашли совершенно новый минерал

Наблюдение за НЛО в Уилтшире

Новые подсказки в поисках Восьмого чуда

Обнаружена экзопланета в обитаемой зоне Альфы Центавра

Популярные места для наблюдения НЛО в США

Страх охватил деревни в Австралии из-за НЛО

Существо в реке Хан в Сеуле стало вирусным

Тайна Атлантиды становится все более загадочной

Тайна человеческого сердца Леонардо да Винчи

Тулси Габбард возрождает теорию заговора о НЛО

Ученые предсказывают Конец света

Центр изучения НЛО открывает набор учителей

Что означает интерес Джей Ди Вэнса к НЛО

Безумный план посетить черную дыру

Загадочные временные явления в тени Земли

Загадочный межзвездный обьект - инопланетный корабль

Закрыли изучавший телепортацию институт МГУ

Заметили облако в форме рестлера Халка Хогана

Затонувший город расскажет о Ноевом ковчеге

Межзвездная экспедиция к черной дыре

Межзвездный объект имеет разумный дизайн

Мрачное предупреждением о 15 годах антиутопии

НЛО сняли в холмах Малверн

Новое открытие в Туринской плащаницы

Новый вид физики, не виданный ранее

Новый окрас кошек противоречит генетическим ожиданиям

Пилот уверен, что нашел самолет Амелии Эрхарт

Признаки древней жизни на Красной планете

Самое странное кольцо Сатурна

Суперинтеллект роботов может привести к Апокалипсису

Существуют другие видео маневров НЛО у Нимица

Сфера Буга - часть скрытой планетарной сети

Таинственные шары требуют научного изучения

Мраморные памятники фото и цена

Автомобилист принял телескоп за НЛО

Великая пирамида на тысячелетия старше фараонов

Вера в возможность существования внеземной жизни

Давайте сохраним Луну

Директор национальной разведки рассказала о НЛО

Доказательство приземления НЛО тысячи лет назад

ИИ ChatGPT превратили в похитителя данных

ИИ вскоре получит контроль над ядерным оружием

Инопланетный зонд нужно изучить

Инопланетяне живут рядом с нами

Направляясь к системе Проксимы Центавра

Огромный подводный город недалеко от Ноева ковчега

Орбита - игровая площадка для миллиардеров

Планеты-изгои могут образовывать планетные системы

Познакомьтесь с черными дырами среднего размера

Путешествие к экзопланете может занять 250 лет

Суперсталь выведет термоядерный синтез на новый уровень

Там могут быть инопланетяне

Теории о происхождении темной материи

Футуристический корабль для полета к звездам

Безумная теория астрофизика

Бесследное исчезновение самолета у Австралии

Взгляните на индонезийский фестиваль НЛО

Все люди могут быть пришельцами с Марса

Деревушка в Шотландии - столица НЛО Великобритании

Зеленый НЛО, похожий на кальмара, над Далласом

Кто первым построит ядерный реактор на Луне

Люди развили две ноги не для того, чтобы бегать

Металлический шар над вулканом в Мексике

Мужчина установил связь с умершим сыном

Нечто в доме приставало по ночам к девочкам

НЛО оказался зеркалом телескопа

НЛО потерпел крушение у Стокгольма

Стоит ли бояться приближающейся кометы

Странное лицо на горе в Чили

Страшное предупреждение Хокинга об НЛО

Таинственный межзвездный объект неестественен

Уфологи пытаются реформировать Великобританию

Хокинг нас предупреждал

Хронология Великой пирамиды не верна

Перепланировка нежилого помещения. Законность и порядок действий

Библейское предупреждение о конце света

Вращение Земли таинственным образом ускорилось

Загадочное лицо на вершине горы в Чили

ИИ самостоятельно обнаружил уязвимости в ПО

Конгрессмена проинформировали об инопланетянах

Консультация, данная разоблачителю Дэвиду Грушу

Криптозоолог занялся политикой

Лох-Несское чудовище выглядит иначе

НЛО вызвали переполох в Индии

Отпечаток пальца библейского персонажа

Повернуть время вспять и стереть ошибки

Провал ключевой для колонизации Луны миссии

Связь между депрессией и датой рождения

США намерены оккупировать Луну

Теория о подозрительной активности в космосе

Трюк с квантовой запутанностью

Уфолог ушел в политику

Уфологи обнаружили базу инопланетян

Фильм 'Пришельцы в Америке - дело Паскагулы'

Экзопланеты подсказали размер и состав Планеты Х

Aвcтpaлийcкaя aнoмaльнaя зoнa нaпoминaeт o ceбe

Будущее астрономии на Луне

Вирусное видео с НЛО над Далласом

Вице-президент США хочет исследовать феномен НЛО

Наверх
Яндекс.Метрика